Unit 13: Chemical Thermodynamics

adapted from http://www.phschool.com/advanced/lesson_plans/chem_brown_2003/index.html

Objectives:

- Define entropy in terms of randomness or disorder, and state the second law of thermodynamics.
- Predict the sign of the entropy of a given process, and state the third law of thermodynamics.
- Describe the effect of temperature and state changes on entropy. Calculate ΔS° for a reaction using a table of absolute entropies, S° .
- Define free energy in terms of enthalpy and entropy and explain the relationship of the sign of ΔG , and the spontaneity of a reaction.
- Calculate ΔG° for a reaction using a table of $\Delta G_{f^{\circ}}$ for the reactants and products.
- Describe the conditions of "standard" state for standard free energy.
- Interconvert ΔG° and K for a reaction.
- Describe the relationship between ΔG and work.
- Calculate the free energy change for a reaction at nonstandard conditions, ΔG , knowing ΔG° , T, and the data needed to calculate Q.
- Predict how ΔG changes with T, given the signs of ΔH , and ΔS .
- Estimate ΔG° at any given temperature, given ΔH° and ΔS°.

Key Words:

•	
spontaneous	3rd law of thermodynamics
reversible process	standard molar entropy
entropy	Gibb's free energy
2nd law of thermodynamics	standard free energy of formation

Tips:

- ΔG_f° like ΔH_f is relative to formation from elements, giving elements a zero value. S° is absolute entropy. A perfect crystal at absolute zero would have no entropy, thus have a zero value.
- The values given in the table of thermodynamic quantities are at $25^{\circ}C$ (298.15 K). These values vary slightly with temperature.

